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ABSTRACT 

The Fractional Fourier Transform (FrFT) is a useful tool that separates signals-of-interest (SOIs) from 

interference and noise in non-stationary environments. This requires estimation of the rotational parameter „a‟ to 

rotate the signal to a new domain along an axis „ta‟, in which the interference can best be filtered out. The value 

of „a‟ is typically chosen as that which minimizes the mean-square error (MSE) between the desired SOI and its 

estimate or that minimizes the overlap between the signal and noise, projected onto the axis „ta‟. In this paper, we 

extend this concept to perform repeated filtering, in multiple FrFT domains to reduce the MSE further than can 

be done with a single FrFT. We perform this solely using MSE as the metric by which to compute „a‟ at each 

stage, thereby simplifying the approach and improving performance over conventional single stage FrFT 

methods or methods based solely on the frequency domain filtering, such as the Fast Fourier transform (FFT). 

We show that the proposed method improves the MSE two or three orders of magnitude over the conventional 

methods using L ≤ 3 stages of FrFT filtering. 
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I. INTRODUCTION 

The Fractional Fourier Transform (FrFT) has a 

wide range of applications in fields including signal 

processing, radar, and communications. It is a very 

effective method for separating a signal-of-interest 

(SOI) from interference and/or noise in non-

stationary signals, which are found in real-world 

scenarios [8]. The FrFT translates the received signal 

to an axis in the time-frequency plane where the SOI 

and interference may be separable [1], when they are 

not separable in the frequency domain, as given by 

the conventional Fast Fourier transform (FFT), or in 

the time domain. This can be visualized using the 

concept of a Wigner Distribution (WD). 

The WD of a signal and interference, as shown 

in Fig. 1, illustrates how the FrFT may be used to 

greatly improve signal separation and how repeated 

filtering may be required. In non-stationary 

environments, both the SOI x(t) and the interference 

xI(t) vary as a function of time and frequency. The 

WD shows how they both independently vary. Note 

that they both overlap in the time domain (ta=0) and 

in the frequency domain (ta=1), but there are other 

axes where they do not overlap. In this illustration, 

two rotations are required to completely filter out the 

interference. First, we rotate to a1, 0 < a1 < 2, to filter 

out the blue portion of the interfering signal, and 

then we rotate to a2, 0 < a2 < 2, to filter out the 

remaining green part. Hence, by finding the 

optimum axes and rotating to them using the FrFT, 

we can filter out the interference completely and 

achieve significant interference suppression (IS) 

improvements over conventional time, e.g. minimum 

mean-square error (MMSE), or frequency (e.g. FFT) 

filtering. The optimum rotational axes can be found 

by searching, using an MMSE criterion. 

 

 
Fig. 1 Wigner Distribution of Signal x(t) and 

Interference xI(t) Shows Optimum Axes ta1 and ta2 

for Filtering Out Interference  

 

When applying the FrFT to perform interference 

suppression, we must first estimate the rotational 

parameter „a‟. Conventional FrFT methods rely on 

choosing the value of „a‟, 0 ≤ a ≤ 2, which produces 

the minimum mean-square error (MMSE) between a 

desired (training) signal and its estimate [10]. This 

often results in large errors because typically the 

sample support in a non-stationary environment is 
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small, but MMSE techniques require lots of samples. 

One approach to overcome this uses an algorithm 

that minimizes the overlap of the SOI and 

interference using the relation between the FrFT and 

the WD and use reduced rank filtering to cancel the 

interference [11]. Another approach is to perform 

repeated filtering in the FrFT domain to cancel 

interference [4]. This method requires repeated 

calculation of a series of optimum filter coefficients 

until MMSE converges. 

In this paper, we present a method that 

simplifies that in [4] by performing the filtering by 

finding the MMSE as in [10] and repeating the 

calculation until the MMSE between the SOI 

estimate and true SOI is less than , set here to  = 

10
−3

. Hence we improve upon the performance in 

[10] using a simpler method than given in [4] for 

repeated FrFT domain filtering. However, because 

this is still an MMSE based approach, and sample 

support is limited in a nonstationary environment, 

performance meeting that in [11] may not be 

achievable in general. 

The paper outline is as follows: Section II 

briefly reviews the FrFT and its relation to the 

Wigner Distribution, which is a useful visual tool for 

the FrFT. Section III presents the signal model. 

Section IV discusses the conventional FrFT 

solutions using MMSE and FFT methods, and 

Section V presents the proposed solution using 

repeated filtering until the MMSE converges. 

Section VI has simulation results showing the robust 

performance of the proposed FrFT method. 

Conclusions and remarks on future work are given in 

Section VII. 

 

II. THE FRACTIONAL FOURIER 

TRANSFORM (FRFT) 
The continuous time FrFT and its properties are 

well-defined in the literature (see for example [8]). 

In discrete time, we can model the N × 1 FrFT of an 

N × 1 vector x as 

   (1) 

where 0 < |a| < 2, F
a
 is an N × N matrix whose 

elements are given by ([3] and [8]) 

 (2) 

uk[m] and uk[n] are the eigenvectors of the matrix S 

[3] 

    (3) 

and  

     (4) 

The Wigner Distribution (WD) is a time-

frequency representation of a signal and may be 

viewed as a generalization of the Fourier Transform, 

which is solely the frequency representation. It can 

be shown that the projection of the WD of a signal 

x(t) onto an axis ta gives the energy of the signal in 

the FrFT domain „a‟, |Xa(t)|
2
 (see e.g. [5] or [6]). In 

discrete time, the WD of a signal x[n] is written as 

[7] 

    (5) 

where l1 = max(0,n−(N−1)) and l2 = min(n,N−1).  

III. SIGNAL MODEL 
Without loss of generality, we model the SOI as 

a digital, baseband binary phase shift keying (BPSK) 

signal whose elements are in (−1,+1) that we would 

like to estimate in the presence of non-stationary 

interference, and/or a nonstationary channel. The 

number of samples we process is N = N1SPB, where 

we have N1 bits per block and SPB samples per bit. 

The SOI is denoted in discrete time, vector form as 

the N × 1 vector x(i). This SOI is corrupted by a 

non-stationary interferer xI(i), to be described in 

Section VI, and by an additive white Gaussian noise 

(AWGN) signal n(i). There may also be a non-

stationary channel h(i) that is corrupting the SOI. 

Here, index i denotes the i
th

 sample, where i = 1, 2, 

,…, N. The received signal y(i) is then 

    (6) 

 

where „*‟ denotes convolution. We obtain an 

estimate of the transmitted signal x(i), denoted (i), 

by first transforming the received signal to the FrFT 

domain, applying an adaptive filter, and taking the 

inverse FrFT. This is written as [10] 

 

        (7) 

 

where F
a
 and F

−a
 are the N × N FrFT and inverse 

FrFT matrices of order „a‟, respectively, and 
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          (8) 

 

is an N × 1 set of optimum filter coefficients to be 

found. The notation diag(G) = (g0, g1, .., gN−1) means 

that matrix G has the scalar coefficients g0, g1, ..., 

and gN−1 as its diagonal elements, with all other 

elements equal to zero. 

 

IV. CONVENTIONAL FRFT METHODS 
A.  MMSE-FrFT Method 

Conventional MMSE-based FrFT methods are well-

known and their description is simply repeated here 

for completeness. MMSE-FrFT techniques seek to 

minimize the error between the desired signal x(i) 

and its estimate (i). That is, we minimize the cost 

function 

 

             (9) 

The optimum set of filter coefficients g0 that 

minimizes the cost function in Eq. (9) can be 

obtained by computing the partial derivative of the 

cost function and setting it to zero [10]. That is, g0 is 

such that 

 

  (10) 

 

This is the MMSE-FrFT solution, given by [10] 

 

      (11) 

 

where 

 

            (12) 

 (13) 

        (14) 

 

and (·)
H
 denotes Hermitian transpose. We thus 

choose the value of „a‟ as that which minimizes the 

cost function in Eq. (9). We point out that we must 

compute the cost function over the range of „a‟ from 

0 < a < 2 by first computing g0,MMSE−FrFT from Eq. 

(11), to find the best value of „a‟. Note also that this 

solution requires a training sequence, x(i). 

 

B. MMSE-FFT Method 

The MMSE-FFT solution is obtained by setting a = 

1 in calculating g0 from Eqs. (11)−(14) since F
1
 

reduces to the standard FFT. So, we can write 

 

 (15) 

 

V. PROPOSED ALGORITHM 
The proposed algorithm computes the signal 

estimate (i) using Eq. (11) and Eq. (7) and chooses 

the value of „a‟ for which the MSE between (i) and 

x(i) is minimum. The search is performed for 0 ≤ a < 

2 using a step size of ∆a = 0.01. We then repeat the 

calculation by using an updated version of the 

received signal obtained from the previous estimate. 

That is, we set y(i) = (i) and again calculate the 

MSE by searching for the best value of „a‟ for which 

the MSE is minimized. This could yield a different 

value of „a‟ than in the previous step. These steps are 

repeated for up to L iterations until the MSE drops 

below the threshold or reaches a minimum value. 

The algorithm is summarized in Table I. Note that l 

= 1 is the conventional MMSE-FrFT solution, and l 

= 1, a = 1 is the conventional MMSE-FFT solution, 

which we compare to the proposed approach in 

Section VI. 

Note that the values a(l) computed by the above 

algorithm would in practice be used to filter the data 

present in the signal following the training sequence. 

As the statistics of the environment and channel 

change, a new training sequence could be used to 

update the a(l)‟s. In the next section, we show 

simulation results, which indicate that typically very 

few iterations, i.e. L ≤ 3 are needed to reduce the 

MSE by more than an order of magnitude over the 

single iteration algorithm of [10] when both dynamic 

interference and a time-varying channel are present. 

 

TABLE I.  Proposed Repeated Filtering 

Algorithm 

 

 

VI. SIMULATIONS 

We assume the SOI x(i) is a BPSK signal as 

discussed above and let N1 = 10 bits per block, and 

SPB = 4 samples per bit, so that N = 40 samples. In 

the first example, we model the channel as a time-

varying, bandpass signal whose center frequency is 

changing with time as [5] 
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           (16) 

 

where fs = SPB·Rb is the sampling rate, and Rb is the 

bit rate. We let the interferer be a chirp signal given 

by 

      (17) 

 

where the amplitude of the chirp, AI, is the strength 

of the interfering signal, obtained by setting its mean 

amplitude based upon a desired carrier-to-

interference ratio (CIR), and we set the amplitude of 

the AWGN based upon a desired Eb/N0. Specifically, 

we set the amplitude of the SOI to and 

set the amplitude of the interferer to AI = 10
−CIR/20

, 

where the CIR is given in dB; note a negative CIR 

means that the interferer is stronger than the SOI. 

We further set the amplitude of the AWGN to be 

. 

The transmitted signal x(i), the received 

signal y(i), the signal estimates after l = 1 iteration 

(i.e. the MMSE-FrFT estimate in [10]) and l = 2 

iterations (the proposed solution), and the l = 1, a = 1 

(FFT estimate) signal are all shown for comparison 

in Fig. 2. Note that the algorithm is able to 

accurately estimate the signal after just two 

iterations, with MSE-FrFT(1) = 0.0089, and MSE-

FrFT(2) = 4.0259·10
−5

, whereas MSE-FFT = 0.1031. 

The best „a‟ at each iteration is shown in the figure. 

In the second example, we let CIR = 0 dB, 

with the result shown in Fig. 3. With the very low 

CIR, we expect to see some performance 

degradation, and this can somewhat be corrected by 

 
Fig. 2 Chirp Interferer; Eb/N0 = 10 dB, CIR = 5 

dB 

 

adding a third iteration, but because there is some 

signal overlap in the time and frequency domains, 

we cannot achieve perfect cancellation. However, 

we do see a reduction in MSE. The MSEs are MSE-

FFT = 0.2276, MSE-FrFT(1) = 0.0096, MSE-

FrFT(2) = 0.0061, and MSE-FrFT(3) = 0.0022. 

 

 
Fig. 3 Chirp Interferer; Eb/N0 = 10 dB, CIR = 0 

dB 

The third example uses an interferer in the form of 

a Gaussian pulse, given by 

 

             (18) 

 

where β and ϕ are the amplitude and phase of the 

pulse, respectively, uniformly distributed in 

(0.5,1.5), and we set the CIR to 5 dB. All other 

parameters are the same as before. The plot is shown 

in Fig. 4. The errors are calculated as MSE-FFT = 

0.1259, MSE-FrFT(1) = 0.01, and MSEFrFT(2) = 

0.001. Only two iterations are needed as the CIR is 

high enough in this case. 

In the last example, shown in Fig. 5, we 

repeat the above but with CIR = 0 dB. Now three 

iterations are needed, and we obtain MSE-FFT = 

0.013, MSE-FrFT(1) = 0.004, MSEFrFT(2) = 

0.0023, and MSE-FrFT(3) = 2.0183· 10
−4

. Hence, in 

these last two examples, better interference 

cancellation is achievable due to the nature of the 

interference, but when CIR is reduced, we require 

three stages of filtering versus two. 

 

Fig. 4 Gaussian Pulse Interferer; Eb/N0 = 10 dB, 

CIR = 5 dB 

 

 
Fig. 5 Gaussian Pulse Interferer; Eb/N0 = 10 dB, 

CIR = 0 dB 
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VII. CONCLUSION 
This paper presents a simple algorithm that uses 

repeated filtering in FrFT domains to improve upon 

signal demodulation in non-stationary interference. 

Mean-square error (MSE) convergence is the metric 

chosen to determine how many iterations are 

required, where the signal estimate at each iteration 

is used to update the next iteration. We demonstrate 

that this outperforms conventional methods that use 

either a single MSE estimate or an FFT approach, 

with two or three orders of magnitude improvement 

in MSE after just two or three iterations, and the 

algorithm is simpler to implement than other 

techniques that rely on iterating on optimum filtering 

coefficients. Future work includes applying the 

technique to other types of real-world signals in 

communications applications. 
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